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Abstract

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a telescope

whose observational capabilities span many areas of radio astronomy. For the purposes

of this project, we investigate its ability to survey radio-bright astrophysical objects

called blazars. This report presents the results of an analysis of the variability of a

population of 1847 blazars located in the Northern Hemisphere using data from CHIME

and from the radio astronomy literature around the 600MHz bandwidth. The analysis

is centered around the computation of a variability metric m0 called the modulation

index, which was calculated for 929 of these sources. In particular, I find that the

average modulation index of blazars is sensitive to both their optical classification and

redshift, as first seen by the Owens Valley Radio Observatory (OVRO) at 15GHz about

10 years ago. Such results promise to help shed a new light on the unexplained physical

phenomena surrounding blazars.



1 Introduction

1.1 What Are Blazars?

AGN, Active Galactic Nuclei, are supermassive accreting black holes that have been

objects of interest in astronomy and cosmology for decades. Their brightness and their small

size points towards physical mechanisms operating under extreme conditions. AGNs also act

as lighthouses dispersed throughout the Universe, making them a useful tool for the study

of cosmology.

The study of AGN is subject to many challenges. Multi-wavelength observations are

needed to probe the many spatial scales of interest. Also, obscuration (usually by dust)

as well as relativistic beaming (due to the motion of plasma with respect to the observer’s

sight line) may mislead empirical studies of the various forms of AGNs. Blazars represent

a category of AGN whose black hole jet is oriented towards our line of sight. They can be

further subdivided into two categories, Flat Spectrum Radio Quasars (FSRQs) and BL Lac

Objects, based on their optical emission characteristics: FSRQs have broad optical emission

lines while BL Lac objects have narrow ones (Urry et al., 1995).

1.2 Goal of the Project

Through this thesis project, I aim to perform a variability analysis of Northern Hemisphere

blazars using the CHIME telescope, which is a novel task for that instrument. In this report

I present relevant information about the CHIME telescope, the calibration of the data, the

steps to compute the variability metric for each source and a statistical analysis of the

variability of blazars. This process, from the calibration to the statistical conclusions, is

intimately tied to a similar analysis performed by the OVRO collaboration (Richards et

al., 2011) which also performed a variability analysis of the Northern Hemisphere blazars.

Though there are significant differences between the contexts of the two surveys (which will

be detailed later), and hence one goal of this project is to see how my conclusions compare

to those of the OVRO collaboration.
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1.3 Brief Description of CHIME

1.3.1 In General

CHIME is a transit radio interferometer built to observe 21 cm emission from neutral

hydrogen located near Penticton, B.C., Canada. Its primary objectives are to study the

expansion history of our universe and to investigate the nature of dark energy. It has an

instantaneous field of view of about 200 square degrees, and observes the full northern sky

each day despite having no moving parts (as Earth rotates, the sky overhead is scanned

through its observational strip along the meridian line). It collects radio signals with 4

cylindrical parabolic reflectors equipped with 1024 dual-polarization feeds. The resulting 2048

analog signal chains are processed by nearly 400 computers across site (CHIME Collaboration,

2021).

1.3.2 Relative to Blazar Monitoring

CHIME’s most relevant output for surveying blazars are the sources’ spectra. A source’s

spectrum depicts how the flux from a particular region of the sky varies as a function of fre-

quency (see figure 1). Blazar spectra have a variability (over a timescale of days to months)

observable at radio wavelengths. Such a variability happens to be well suited to the capabil-

ities of CHIME, which is able to monitor the spectrum of every Northern sky radio source

each day. However, the evolution of a source’s observed spectrum does not solely reflect its

intrinsic variability as it is subject to external influences. The main challenge of this project

is thus to quantify each source’s intrinsic variability by taking into account those external

influences. To elucidate this question, the data retrieving method and contamination sources

are first presented.
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Figure 1: Example of a spectrum from source 3C274 on February 11th, 2019. The flux has
values of Jansky [Jy], which has dimensions of power per unit surface area per frequency.
The ripple in the spectrum is due to the CHIME instrumental response. However, since this
effect is constant in time, it doesn’t inhibit CHIME’s ability to detect variability.

1.3.3 Data Characteristics

Each source’s spectrum is recorded over a 10-minute period during which the source

(whose motion is in the East-West direction) transits the static beam of CHIME (which is

along the North-South direction). The bandwidth used for blazar monitoring is from 588

MHz to 800 MHz. The CHIME data set provides the spectra measurements of every source

in both X and Y polarizations, but given that the sources of interest are not highly polarized,

both polarizations are effectively the same. Later, the analysis proceeds with the X polarized

data only.

From the transit recording, there are a few correction steps to go through before retrieving

the plot of figure 1. First, there’s the removal of radio frequency interference (RFI), which

consists of human-made radio contamination (e.g., TV broadcasting and LTE bands). An-

other important one is the correction of the beam. For point source analyses, the beam model

is concerned with matching the data to sources with known spectra. It fits the visibilities

measured with large east-west baselines to a model of the sky in the radio domain that solely

includes extragalactic point sources (CHIME Collaboration, 2021). The data shown in figure

1 is RFI filtered and beam corrected. On top of that, the Sun can contaminate a source’s

spectrum. It can be largely affected if its source happens to transit at a time close to zenith.
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No data is being thrown out based on this contamination, hence we will need to consider it

in our analysis by rejecting the appropriate data. Two other disturbances, which cannot be

corrected for but will rather contribute to the error of the data, have to be considered. The

first one is the thermal noise, innate to the measurement of the data. It is recorded along

with the spectrum of the source. The second one is the gain noise. Each day, a source among

Cygnus-A, Cassiopeia-A, Taurus-A and Virgo-A is used to calibrate the gain. The calibration

is applied proportionally to the amplitude of the flux for each source, such that an error in

the gain results in a fractional flux error, typically ∼2% on day timescales. This means that

the absolute gain noise is small for dim sources but is larger for brighter sources. Hence, dim

sources’ noise are thermally dominated while bright sources are largely dominated by gain

errors. The thermal and gain noise represent the cumulative error on each flux value of our

spectrum.

RFI excision and beam correction is performed by the CHIME back-end computers. The

resulting data is retrievable from the servers used by CHIME. Given that we want to look

into the time evolution of each spectrum, the frequency axis is collapsed to one single value

by taking the weighted mean of the spectrum. Repeating this for every day results in an

array called the lightcurve of the source (see figure 2). As mentioned earlier, the challenge is

to isolate the source’s intrinsic variability from instrumental effects. Recall that RFI excision

and beam correction have been applied, that we will need to eliminate data contaminated

by the Sun and that we are considering an error on our data which is due to thermal and

gain noise. In supplement of these disturbances, we are not ensured that the instrument

is not systematically modifying our lightcurve. A source whose intrinsic variability is zero

could show variability due to a systematic error coming from the instrument. Computing

this quantity, called the gain drift, would allow to calibrate the lightcurves of all sources by

ensuring that the variability observed is not due to a systematic variation coming from the

instrument.
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Figure 2: Example of a lightcurve, here of the source 3C274. The data point on CHIME
Sidereal Day11920 corresponds to the weighted mean of the flux values shown in figure 1.
While the lightcurve shows how the spectrum of a source varies in time, there is no guarantee
that this variation is intrinsic to the source. A calibration, using the gain drift, needs to be
performed.

2 Calibration Process

2.1 Computing the observed variation

Richards et al. provide a procedure to account for the instrumental variation we are

looking for. The first step is to find the variability in the spectra of sources that are expected

to be stable.

The frequency axis ranges from 588 MHz to 800 MHz, uniformly divided into 544 fre-

quencies. The time axis spans 466 days between so-called CSD (CHIME Sidereal Days)1

1797 and 2263, out of which 391 are processed. To compute the lightcurve of a source, the

array of fluxes fij and weights wij of the source are used, where i and j are indices denoting

the frequency and CSD axes respectively. The weight wij is related to the error σij with

wij =
1
σ2
ij
, where the error σij on fij is the sum of the thermal noise and the gain noise.

1CHIME Sidereal Days are a measure of days past the first data measurements from the CHIME experi-
ment, which started with the CHIME prototype telescope Pathfinder on November 15th, 2013 (Bandura et
al., 2014).
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The weighted mean flux across the frequency axis, corresponding to the lightcurve of a

given source, is thus

f j =

∑543
i=0wij · fij∑543

i=0wij

. (1)

The error σj on each f j is

σj =

√
1∑543

i=0 σ
−2
ij

. (2)

Following Richards et al., three sources are taken as knowingly stable : 3C274, 3C286

and DR21. Their lightcurves are then f jk where k is an index running between 0 and 2 and

corresponding to each source. Given that all three sources have different mean flux values,

they are first normalized around 1:

f̂ jk =
f jk

µk

, (3)

where the mean flux density µk, corresponding to the weighted mean of the lightcurve, is

given by

µk =

∑391
j=0wjk · f jk∑391

j=0wjk

. (4)

where wjk corresponds to the weight of each f jk, such that wjk = 1
σ2
jk

where σj can be

found for each k source from equation (2).

Only the days where all the three sources provide a weighted mean flux are considered

given that not all days have a mean flux from each source, as there is sometimes missing

data. This process reduces the length of the CSD axis from 391 to 285 days. Thus for those

285 days, there are 3 normalized flux values f̂ jk. For each day, the weighted normalized flux

value between the three sources f̂ j,tot is given by:

f̂ j,tot =

∑2
k=0wjk · f̂ jk∑2

k=0wjk

. (5)

Figure 3 displays the measured gain drift from this technique, i.e f̂ j,tot for j running from

0 to 285.
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The fit that is then performed on the f̂ j,tot array is a cubic spline fit. A spline fit is similar

to a polynomial fit, except it fits a different polynomial for different parts of the domain of

the distribution. The number of different polynomials that are chosen to be fitted defines

interstices between each polynomial that are called knots. A cubic spline fit means that extra

constraints are added to the fitting for the sake of smoothness around the knots. The patsy

library in python has functions that allow, for a given (x, y) data set, to handily compute the

cubic spline fit for specified knots. An immediate question arises: what number of knots to

choose, and where to place them? For simplicity, the knots are taken to be equally separated

throughout the domain of the data set. In regards to the number of knots n, an investigation

of χ2(n) indicates that a sufficient number of knots has been attained whenever the value of

χ2 stops improving. In other words, a sufficient number of knots is attained whenever adding

knots does not improve the fitting.

The number of knots n is chosen to be 1 as d(χ2(n))
d(n)

drops from order −10−1 and stabilizes

around −10−2 when n > 1. Figure 3 shows the gain drift along with the n=1 spline fit.

Figure 3: Plot of the normalized flux density that is used to derive the normalized gain drift
using a spline fit. Each point corresponds to the weighted mean of three normalized flux
values coming from sources 3C274, 3C286 and DR21. The n=1 spline fit is shown in red.
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2.2 Correcting for gain drift

The second step is straightforward given the normalized fit. The lightcurve of any given

source is divided by the normalized fit. Figure 4 shows the raw and adjusted lightcurves of

2 sources.

Figure 4: The top figures display the raw lightcurves for sources J1349+5341 and J2010+6116
along with the gain drift fit superposed. The bottom figures display the adjusted lightcurves
of those 2 sources, where the gain drift is removed. Notice that the lightcurve of J1349+5341
has no appreciable intrinsic variability given how it follows the gain drift, which is why its
adjusted lightcurve now appears to be flat. On the other hand, the variability in the lightcurve
of J2010+6116 seems independent of the gain drift, which still shows in its adjusted lightcurve.

3 Computing an estimate for the modulation index m

Introduced in Richards et al., the intrinsic modulation index m of a source is defined as

m = σ0

S0
, with σ0 being the intrinsic standard deviation of the lightcurve of the source and S0

being the intrinsic source mean flux of the lightcurve. m hence is a measure of the relative

intrinsic variability of the source, free from observational and instrumental contamination.

Our goal is to measure its best estimate possible.
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3.1 Estimating m

With our lightcurves calibrated for gain drift, we can use rough estimates for σ0 and

S0 with σobs and Sobs, respectively the standard deviation and the mean of the adjusted

lightcurve. The issue with this elementary modulation index mobs = σobs

Sobs
is that if the

distribution of our lightcurve is affected by noise, then the observed modulation index will

be high, even if the distribution shows no significant variability. Therefore, a high observed

modulation index does not necessarily tell anything about the variability of the source. Maybe

there is relevant variability, maybe the lightcurve is noisy or maybe both. In contrast, if mdata

is low, it undoubtedly means that the source has low variability. Therefore, a better estimate

for m, m0, needs to be found in order to report relevant variability, which means that better

estimates for S0 and σ0 need to be found.

CHIME data is not well suited to find a good estimate for S0. As a driftscan telescope,

CHIME has an angular resolution for point sources that is not as good as one of a pointed

telescope (such as the OVRO, which is a 40-m pointed telescope (Richards et al., 2011))

which means that its recording of sources’ spectra is more contaminated with noise from

neighboring regions in the sky compared to OVRO. Though, this effect does not impact the

measured variability of CHIME since the neighbouring noise is typically uniform in time. To

achieve a better estimate for S0, namely Sbest, the Specfind catalog provides more reliable

values for the mean flux of a good part of our sources at 600MHz (Vollmer et al., 2010).

CHIME was conceived to make the most precise measurements, which means that it is

excellent at measuring flux value differences. This is needed to find a reliable estimate for

σ0. Given S0 = Sbest, all we are now concerned with is finding a best estimate for σ0 out of

our lightcurves, namely σbest.

3.2 Finding an estimate for σ0 to find m0

The problem with the computation of mobs is that it doesn’t consider the thermal and

gain noise, such that noisy data may manifest variability only due to the error on the data

and not due to intrinsic variation from the source itself. So, how to build an estimate for σ0

that does consider this error?
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In their analysis towards computing a best estimate for the modulation index, the

OVRO collaboration derives, based on the assumption that the observed flux measurements

of a source are normally distributed around the true mean flux of the source, an equation

that computes, for a given source with a true mean flux and standard deviation S0 and σ0,

what is the likelihood lj to make a flux measurement Sj with an error σj:

lj =
1√

2π(σ2
0 + σ2

j )
exp[− (Sj − S0)

2

2(σ2
j + σ2

0)
]. (6)

When considering N flux values and errors for all the points on our lightcurves, this

likelihood turns into:

L(S0, σ0) =
N∏
j=1

lj = (
N∏
j=1

1√
2π(σ2

0 + σ2
j )
)× exp[−1

2

N∑
j=1

(Sj − S0)
2

2(σ2
j + σ2

0)
]. (7)

We can then integrate over a space of values for S0 in order to have an expression for the

likelihood to be only in terms of the flux measurements and observed errors:

L(σ0) =

∫
all S0

dS0 (
N∏
j=1

1√
2π(σ2

0 + σ2
j )
)× exp[−1

2

N∑
j=1

(Sj − S0)
2

2(σ2
j + σ2

0)
], (8)

where the bounds of integration of S0 are taken to be centered around what our best

estimate for the mean flux of the source is. We can then input a range of values for the

σ0 candidates and look at the resulting L(σ0) distribution. A Gaussian fit is performed

on that distribution, which allows to pick the mean of the fit as σbest (see figure 5). This

allows to find a value σbest for 1817 of our sources (about 98% of the catalog of CHIME).

In practice, to aid in the numerical integration of equation 7, Sj and σj are normalized to

make Sobs = 0 and σobs = 1. This normalization is undone after determining σbest. Also, day

flagged data is rejected from our lightcurves in order to remove contaminated data from the

Sun as mentioned in section 1.3.3. It is deemed more appropriate to conservatively reject all

outliers even if it means getting rid of uncontaminated data.
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Figure 5: Distribution of the likelihood function depending on the σ∗
0 candidates, here for the

source J2330+3348. Notice the σ0 is starred given that this likelihood function is computed
in the space where σobs is set to 1. The peak of the fit is chosen instead of the maximum
value of the data points since the resolution of the σ∗

0 candidates’ array is not always good
enough to ensure that the peak of the data is close enough to the peak of the distribution.

Once σbest is found, we can associate it to Sbest in order to retrieve our best estimate for

the modulation index, m0 =
σbest

Sbest
. This allows us to find a modulation index estimate m0 for

929 sources, whose distribution is shown in figure 6 :

Figure 6: Distribution of m0, shown here up to 1. Notice a lot of values are sent to zero
because they were too close to zero compared to their error. This causes only very few sources
to be observed with very low variability, such that we cannot report most of the very low
variable sources. Thus, in order for our model of this distribution to be more accurate, we
need to consider a lower bound on m0 given that data close to 0 underestimates the actual
population of sources with very low variability.
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4 Statistical Analysis of m0

4.1 Finding Appropriate Parameters

We would like to directly compare the variability of different selections of sources given

that we now have their variability metric. To do so, we can look for the expected values

of m0 for our different selections along with their error. To do so, Richards et al. fit their

distributions to an exponential fit, whose statistics are known well enough to extract an

expected value and corresponding error easily. This choice of an exponential fit embeds no

physical motivation and is just handy for our m0 distribution. Before performing those fits,

we need to make sure we are using a sensible range and number of bins to our histogram, as

these choices will greatly influence the resulting expected value of m0.

As mentioned in the caption of figure 6, a lower bound on m0 needs to be established

to have a more accurate distribution given our limited capacity to report very low variable

sources. To do so, we can perform a fit on our total m0 distribution at various lower bounds

and look at how does the expected value of m0 change as a function of the chosen lower

bound. The results are displayed in figure 7.

Figure 7: Plot showing how the expected value of m0 changes as a function of the chosen
lower bound for the total population. Notice the region from 0 to 0.06 where the expected
value drops corresponding to the region where the distribution is affected by an insufficient
amount of sources. As the cutoff increases, m0 stabilizes around 0.08. For that reason, 0.08
is taken to be the lower bound, as taking a value close to it doesn’t significantly change the
resulting m0.
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Therefore, we take 0.08 as the lower bound on our population of m0 values. We have no

physical reason to choose an upper bound, but given the presence of outliers at higher m0, it

would be more reasonable to consider one. A quick look into different tries of upper bounds

shows that there is no marginal difference when that bound is taken around 0.5. While it

would be better to enclose more data by choosing a higher upper bound, it is deemed better

to exclude all outliers than accepting a few. Thus, 0.5 is taken as our upper bound, such

that our values for m0 are chosen to go from 0.08 to 0.5. Given this range, what bin width

should be chosen?

From our Gaussian fit from figure 5, each of our m0 values is attributed an error. It

would therefore be relevant to consider the mean error on m0 to be the typical bin width

given it represents the resolution of our m0 values. We can then find the number of bins on

the histogram to be the range of m0 divided by the bin width. The distribution of error on

all m0 values is shown in figure 8.

Figure 8: Histogram of the distribution of the error on m0. It has a mean of ∼ 0.01, therefore
the typical error on our m0 values is taken to be 0.01. Given a range of m0 of 0.42, we take
a reasonable estimate for our number of bins to be 0.42

0.01
= 42.

We now have thought out parameters to use for our exponential fit. By using a bin width

of 0.01 along with upper and lower bounds of 0.5 and 0.08 for m0, the resulting distribution

of m0 is shown in figure 9.
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Figure 9: Distribution of all computed m0 between 0.08 and 0.5. The lower bound and upper
bound have been determined given the poor accuracy of our distribution near zero and the
presence of outliers. The mean error on m0 being 0.01, the bin width is chosen to be 0.01. An
exponential is fit to the resulting histogram. The resulting expected value of m0 for the total
distribution, which now encloses 298 sources, is 0.058±0.003. The OVRO collaboration found
an equivalent quantity of 0.091±0.008 (Richards et al., 2011). Thus, there is a significant
discrepancy in the absolute measured variability between CHIME and OVRO, which observe
at very different wavelengths.

4.2 Looking into Different Selections of Blazars

The computation of m0 allows to have a variability metric for 929 blazars out of the 1847

initial sources. We use a filter on these m0 values by excluding all those lesser than 0.08 and

greater than 0.5 in order to have a distribution that is not affected by our underestimation

of low variable sources nor by outliers, which reduces our total population to 298 m0 values,

out of which 208 are Flat Spectrum Radio Quasars (FSRQs) and 43 are BL Lac Objects.

In their analysis in the 15 GHz bandwidth, the OVRO collaboration reports a significant

difference between the variability of the FSRQ and BL Lac objects populations, observing

that the expected value of the modulation index of BL Lac objects is marginally higher than

the one for FSRQs. Also, the expected value of the variability of FSRQs with a redshift

smaller than 1 was observed to be significantly higher than the one of FSRQs with a redshift

greater or equal than 1 (Richards et al., 2011). The same tests can be conducted with the

data set found from this analysis.
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An exponential function fit to the distribution ofm0 for FSRQs and BL Lac objects allows

to compare the probability density functions (PDF) of m0 for both those populations. Figure

10 shows both distributions and exponential fits and figure 11 shows both resulting PDFs

along with the equivalent results from the OVRO collaboration.

Figure 10: Histograms of m0 for FSRQs and BL Lac objects along with their exponential fit.
This results in an expected value for m0 of 0.046±0.003 for FSRQs and 0.08±0.1 for BL Lac
objects.

Figure 11: On the left: comparison between the PDFs of m0 of FSRQs and BL Lac objects
using CHIME data. From this plot, BL Lac objects show a significantly higher variability
than FSRQs on average. On the right: comparison between the PDFs of m0 for FSRQs and
BL Lac objects from the OVRO telescope (Richards et al., 2011).
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The expected value of m0 is 0.046±0.003 for FSRQs and 0.08±0.1 for BL Lac objects. For

FSRQs, the expected value of m0 measured from OVRO is more than 9σ away from the one

measured with CHIME, which shows significant discrepancy between the two experiments (for

BL Lacs, that difference is of order 1σ). Though the difference between the two populations

is the same: BL Lac objects are marginally more variable than FSRQs.

A similar selection of blazars can be used, this time comparing the variability of FSRQs

with redshift higher or smaller than 1. Out of the 208 FSRQs, 150 have a redshift greater

or equal than 1 and 58 have a redshift smaller than 1. The resulting distributions and

exponential fit are shown in figure 12 while the resulting PDFs are shown in figure 13 along

with the equivalent results from OVRO:

Figure 12: Histograms of m0 for FSRQs with z ≥ 1 and z < 1 along with their exponential
fit. This results in an expected value for m0 of 0.051±0.007 for low z FSRQs and 0.041±0.003
for higher z FSRQs.

Figure 13: On the left: comparison between the PDFs of m0 of FSRQs with z ≥ 1 and z <1
using CHIME data. On the right: comparison between the PDFs of m0 of FSRQs with z ≥ 1
and z <1 from the OVRO telescope (Richards et al., 2011).
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The redshift analysis shows that while the absolute variability of the chosen populations

differ significantly between CHIME and OVRO (as the OVRO results are of order ∼ 5σ away

from the CHIME results), the qualitative conclusions are in accordance: low redshift FSRQs

display significant higher variability than high redshift FSRQs, despite that difference being

less marginal with the CHIME dataset. Therefore, the CHIME analysis of blazars’ variability

draws the same qualitative conclusions as those of the OVRO’s despite measuring an average

order of variability marginally smaller.

5 Conclusion

This analysis, beyond having shown CHIME’s ability to perform a point source variability

monitoring (despite requiring literature data for absolute flux values), has allowed for the

confirmation of the importance of the radio bandwidth for the study of blazars. It appears

indeed that the differences in variability among the different populations of blazars observed

by the OVRO collaboration 10 years ago in the 15GHz bandwidth using a pointed 40-m

telescope are also apparent when using recent data at 600MHz from the CHIME telescope.

This persistence, far from being trivial, hints towards the importance of this result, which

suggests that the categorization of blazars between FSRQs and BL Lac objects, originally

based on one part of the electromagnetic spectrum (the optical bandwidth) seems to have

an importance in another part of the electromagnetic spectrum (here, the radio bandwidth).

Future research would have to relate the physics of both radio and optical observations in

a way that is consistent with these conclusions. For example, it could be that the physical

phenomena at the origin of the emission of blazars’ optical spectral lines are the same as the

ones causing their variability in the radio bandwidth.

Also, as far as CHIME and the OVRO draw same qualitative conclusions on these differ-

ences in variability, their quantitative results are significantly different, with OVRO observing

absolute variability marginally higher than CHIME’s. It is speculated to be due to the dif-

ferent bandwidth used.
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At radio wavelengths, blazars’ measured flux originates from synchrotron radiation, whose

energy is higher near the center of the black hole due to the gravitational potential well

accelerating particles. While we would expect the spectrum coming from the inner region of

a black hole to be independent of frequency in our regime, it is different when looking farther

away, where electrons’ radiation is expected to be less energetic, such that higher flux should

be measured at lower frequency. However, if one instrument does not have the resolution to

spatially solve for the black hole, the sum from both the inner and outer region of the black

hole are measured. At lower frequency, the contribution of both those regions is higher than

at higher frequency given that the higher frequency signal dims as you get farther away from

the black hole, contrary to the lower frequency signal (Condon & Ransom, 2016). Given

neither CHIME nor the OVRO are able to spatially solve the blazars they observe, we expect

blazars’ mean measured flux from CHIME to be higher than the OVRO’s as CHIME observes

at lower frequency.

If we look back at our equation for the modulation index m = σ0

S0
, higher measured flux

translates to lower m. This would explain why CHIME observes an absolute variability that

is marginally lower than the OVRO’s, as CHIME’s bandwidth is around 600MHz compared

to 15 GHz for the OVRO.

All of these investigations are trying to uncover the mysterious physical phenomena sur-

rounding blazars, notably their emission of gamma rays, whose origin still sparks debate.

Significant differences in the radio variability of various blazar populations having been es-

tablished, future research would have to focus on explaining why do we observe them and

more fundamentally, how does a classification based on the observation of optical spectral

lines somehow relate to the observation of months-scale radio variability.
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