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Abstract

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a telescope
whose observational capabilities span many areas of radio astronomy. For the purposes
of this project, we investigate its ability to survey radio-bright astrophysical objects
called blazars. This report presents the results of an analysis of the variability of a
population of 1847 blazars located in the Northern Hemisphere using data from CHIME
and from the radio astronomy literature around the 600MHz bandwidth. The analysis
is centered around the computation of a variability metric mg called the modulation
index, which was calculated for 929 of these sources. In particular, I find that the
average modulation index of blazars is sensitive to both their optical classification and
redshift, as first seen by the Owens Valley Radio Observatory (OVRO) at 15GHz about
10 years ago. Such results promise to help shed a new light on the unexplained physical

phenomena surrounding blazars.



1 Introduction

1.1 What Are Blazars?

AGN, Active Galactic Nuclei, are supermassive accreting black holes that have been
objects of interest in astronomy and cosmology for decades. Their brightness and their small
size points towards physical mechanisms operating under extreme conditions. AGNs also act
as lighthouses dispersed throughout the Universe, making them a useful tool for the study
of cosmology.

The study of AGN is subject to many challenges. Multi-wavelength observations are
needed to probe the many spatial scales of interest. Also, obscuration (usually by dust)
as well as relativistic beaming (due to the motion of plasma with respect to the observer’s
sight line) may mislead empirical studies of the various forms of AGNs. Blazars represent
a category of AGN whose black hole jet is oriented towards our line of sight. They can be
further subdivided into two categories, Flat Spectrum Radio Quasars (FSRQs) and BL Lac
Objects, based on their optical emission characteristics: FSRQs have broad optical emission

lines while BL: Lac objects have narrow ones (Urry et al., 1995).

1.2 Goal of the Project

Through this thesis project, I aim to perform a variability analysis of Northern Hemisphere
blazars using the CHIME telescope, which is a novel task for that instrument. In this report
I present relevant information about the CHIME telescope, the calibration of the data, the
steps to compute the variability metric for each source and a statistical analysis of the
variability of blazars. This process, from the calibration to the statistical conclusions, is
intimately tied to a similar analysis performed by the OVRO collaboration (Richards et
al., 2011) which also performed a variability analysis of the Northern Hemisphere blazars.
Though there are significant differences between the contexts of the two surveys (which will
be detailed later), and hence one goal of this project is to see how my conclusions compare

to those of the OVRO collaboration.



1.3 Brief Description of CHIME

1.3.1 In General

CHIME is a transit radio interferometer built to observe 21 c¢m emission from neutral
hydrogen located near Penticton, B.C., Canada. Its primary objectives are to study the
expansion history of our universe and to investigate the nature of dark energy. It has an
instantaneous field of view of about 200 square degrees, and observes the full northern sky
each day despite having no moving parts (as Earth rotates, the sky overhead is scanned
through its observational strip along the meridian line). It collects radio signals with 4
cylindrical parabolic reflectors equipped with 1024 dual-polarization feeds. The resulting 2048
analog signal chains are processed by nearly 400 computers across site (CHIME Collaboration,

2021).

1.3.2 Relative to Blazar Monitoring

CHIME’s most relevant output for surveying blazars are the sources’ spectra. A source’s
spectrum depicts how the flux from a particular region of the sky varies as a function of fre-
quency (see figure 1). Blazar spectra have a variability (over a timescale of days to months)
observable at radio wavelengths. Such a variability happens to be well suited to the capabil-
ities of CHIME, which is able to monitor the spectrum of every Northern sky radio source
each day. However, the evolution of a source’s observed spectrum does not solely reflect its
intrinsic variability as it is subject to external influences. The main challenge of this project
is thus to quantify each source’s intrinsic variability by taking into account those external
influences. To elucidate this question, the data retrieving method and contamination sources

are first presented.
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Figure 1: Example of a spectrum from source 3C274 on February 11th, 2019. The flux has
values of Jansky [Jy], which has dimensions of power per unit surface area per frequency.
The ripple in the spectrum is due to the CHIME instrumental response. However, since this
effect is constant in time, it doesn’t inhibit CHIME’s ability to detect variability.

1.3.3 Data Characteristics

Each source’s spectrum is recorded over a 10-minute period during which the source
(whose motion is in the East-West direction) transits the static beam of CHIME (which is
along the North-South direction). The bandwidth used for blazar monitoring is from 588
MHz to 800 MHz. The CHIME data set provides the spectra measurements of every source
in both X and Y polarizations, but given that the sources of interest are not highly polarized,
both polarizations are effectively the same. Later, the analysis proceeds with the X polarized
data only.

From the transit recording, there are a few correction steps to go through before retrieving
the plot of figure 1. First, there’s the removal of radio frequency interference (RFI), which
consists of human-made radio contamination (e.g., TV broadcasting and LTE bands). An-
other important one is the correction of the beam. For point source analyses, the beam model
is concerned with matching the data to sources with known spectra. It fits the visibilities
measured with large east-west baselines to a model of the sky in the radio domain that solely
includes extragalactic point sources (CHIME Collaboration, 2021). The data shown in figure
1 is RFI filtered and beam corrected. On top of that, the Sun can contaminate a source’s

spectrum. It can be largely affected if its source happens to transit at a time close to zenith.



No data is being thrown out based on this contamination, hence we will need to consider it
in our analysis by rejecting the appropriate data. Two other disturbances, which cannot be
corrected for but will rather contribute to the error of the data, have to be considered. The
first one is the thermal noise, innate to the measurement of the data. It is recorded along
with the spectrum of the source. The second one is the gain noise. Each day, a source among
Cygnus-A, Cassiopeia-A, Taurus-A and Virgo-A is used to calibrate the gain. The calibration
is applied proportionally to the amplitude of the flux for each source, such that an error in
the gain results in a fractional flux error, typically ~2% on day timescales. This means that
the absolute gain noise is small for dim sources but is larger for brighter sources. Hence, dim
sources’ noise are thermally dominated while bright sources are largely dominated by gain
errors. The thermal and gain noise represent the cumulative error on each flux value of our
spectrum.

RFT excision and beam correction is performed by the CHIME back-end computers. The
resulting data is retrievable from the servers used by CHIME. Given that we want to look
into the time evolution of each spectrum, the frequency axis is collapsed to one single value
by taking the weighted mean of the spectrum. Repeating this for every day results in an
array called the lightcurve of the source (see figure 2). As mentioned earlier, the challenge is
to isolate the source’s intrinsic variability from instrumental effects. Recall that RF1 excision
and beam correction have been applied, that we will need to eliminate data contaminated
by the Sun and that we are considering an error on our data which is due to thermal and
gain noise. In supplement of these disturbances, we are not ensured that the instrument
is not systematically modifying our lightcurve. A source whose intrinsic variability is zero
could show variability due to a systematic error coming from the instrument. Computing
this quantity, called the gain drift, would allow to calibrate the lightcurves of all sources by
ensuring that the variability observed is not due to a systematic variation coming from the

istrument.



Lightcurve of 3C274
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Figure 2: Example of a lightcurve, here of the source 3C274. The data point on CHIME
Sidereal Day!'1920 corresponds to the weighted mean of the flux values shown in figure 1.
While the lightcurve shows how the spectrum of a source varies in time, there is no guarantee
that this variation is intrinsic to the source. A calibration, using the gain drift, needs to be
performed.

2 Calibration Process

2.1 Computing the observed variation

Richards et al. provide a procedure to account for the instrumental variation we are
looking for. The first step is to find the variability in the spectra of sources that are expected
to be stable.

The frequency axis ranges from 588 MHz to 800 MHz, uniformly divided into 544 fre-
quencies. The time axis spans 466 days between so-called CSD (CHIME Sidereal Days)"
1797 and 2263, out of which 391 are processed. To compute the lightcurve of a source, the
array of fluxes f;; and weights w;; of the source are used, where 7 and j are indices denoting
the frequency and CSD axes respectively. The weight w;; is related to the error o;; with

Wi = U%, where the error o;; on f;; is the sum of the thermal noise and the gain noise.
i

LCHIME Sidereal Days are a measure of days past the first data measurements from the CHIME experi-
ment, which started with the CHIME prototype telescope Pathfinder on November 15th, 2013 (Bandura et
al., 2014).



The weighted mean flux across the frequency axis, corresponding to the lightcurve of a

given source, is thus
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Following Richards et al., three sources are taken as knowingly stable : 3C274, 3C286

(1)

The error o; on each f; is

and DR21. Their lightcurves are then 7]'1@ where £ is an index running between 0 and 2 and
corresponding to each source. Given that all three sources have different mean flux values,

they are first normalized around 1:
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where the mean flux density puy, corresponding to the weighted mean of the lightcurve, is

given by
391 -
Do Wik * i
391 :
ijo Wik

where wj;, corresponds to the weight of each ?jk, such that wj, = = where o; can be

(4)

i, =

found for each k source from equation (2).

Only the days where all the three sources provide a weighted mean flux are considered
given that not all days have a mean flux from each source, as there is sometimes missing
data. This process reduces the length of the CSD axis from 391 to 285 days. Thus for those
285 days, there are 3 normalized flux values ?jk. For each day, the weighted normalized flux

-~

value between the three sources fﬂgt is given by:
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Figure 3 displays the measured gain drift from this technique, i.e _jiot for 7 running from

0 to 285.



The fit that is then performed on the ?j’tot array is a cubic spline fit. A spline fit is similar
to a polynomial fit, except it fits a different polynomial for different parts of the domain of
the distribution. The number of different polynomials that are chosen to be fitted defines
interstices between each polynomial that are called knots. A cubic spline fit means that extra
constraints are added to the fitting for the sake of smoothness around the knots. The patsy
library in python has functions that allow, for a given (x,y) data set, to handily compute the
cubic spline fit for specified knots. An immediate question arises: what number of knots to
choose, and where to place them? For simplicity, the knots are taken to be equally separated
throughout the domain of the data set. In regards to the number of knots n, an investigation
of x*(n) indicates that a sufficient number of knots has been attained whenever the value of
x? stops improving. In other words, a sufficient number of knots is attained whenever adding
knots does not improve the fitting.

d(x*(n)

The number of knots n is chosen to be 1 as a0 ) drops from order —107! and stabilizes

around —1072 when n > 1. Figure 3 shows the gain drift along with the n=1 spline fit.
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Figure 3: Plot of the normalized flux density that is used to derive the normalized gain drift
using a spline fit. Each point corresponds to the weighted mean of three normalized flux
values coming from sources 3C274, 3C286 and DR21. The n=1 spline fit is shown in red.



2.2 Correcting for gain drift

The second step is straightforward given the normalized fit. The lightcurve of any given

source is divided by the normalized fit. Figure 4 shows the raw and adjusted lightcurves of

2 sources.
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Figure 4: The top figures display the raw lightcurves for sources J1349+5341 and J20104-6116
along with the gain drift fit superposed. The bottom figures display the adjusted lightcurves
of those 2 sources, where the gain drift is removed. Notice that the lightcurve of J1349+5341
has no appreciable intrinsic variability given how it follows the gain drift, which is why its
adjusted lightcurve now appears to be flat. On the other hand, the variability in the lightcurve
of J20104+-6116 seems independent of the gain drift, which still shows in its adjusted lightcurve.

3 Computing an estimate for the modulation index m

Introduced in Richards et al., the intrinsic modulation index m of a source is defined as
m = g—g, with oy being the intrinsic standard deviation of the lightcurve of the source and Sy
being the intrinsic source mean flux of the lightcurve. m hence is a measure of the relative
intrinsic variability of the source, free from observational and instrumental contamination.

Our goal is to measure its best estimate possible.



3.1 Estimating m

With our lightcurves calibrated for gain drift, we can use rough estimates for oy and
So with o, and Sy, respectively the standard deviation and the mean of the adjusted
lightcurve. The issue with this elementary modulation index mg,, = % is that if the
distribution of our lightcurve is affected by noise, then the observed modulation index will
be high, even if the distribution shows no significant variability. Therefore, a high observed
modulation index does not necessarily tell anything about the variability of the source. Maybe
there is relevant variability, maybe the lightcurve is noisy or maybe both. In contrast, if mgaq
is low, it undoubtedly means that the source has low variability. Therefore, a better estimate
for m, my, needs to be found in order to report relevant variability, which means that better
estimates for Sy and og need to be found.

CHIME data is not well suited to find a good estimate for Sy. As a driftscan telescope,
CHIME has an angular resolution for point sources that is not as good as one of a pointed
telescope (such as the OVRO, which is a 40-m pointed telescope (Richards et al., 2011))
which means that its recording of sources’ spectra is more contaminated with noise from
neighboring regions in the sky compared to OVRO. Though, this effect does not impact the
measured variability of CHIME since the neighbouring noise is typically uniform in time. To
achieve a better estimate for Sy, namely Spes, the Specfind catalog provides more reliable
values for the mean flux of a good part of our sources at 600MHz (Vollmer et al., 2010).

CHIME was conceived to make the most precise measurements, which means that it is
excellent at measuring flux value differences. This is needed to find a reliable estimate for

0o. Given Sy = Spest, all we are now concerned with is finding a best estimate for oy out of

our lightcurves, namely opeq;-

3.2 Finding an estimate for oy to find m,

The problem with the computation of m, is that it doesn’t consider the thermal and
gain noise, such that noisy data may manifest variability only due to the error on the data
and not due to intrinsic variation from the source itself. So, how to build an estimate for oq

that does consider this error?



In their analysis towards computing a best estimate for the modulation index, the
OVRO collaboration derives, based on the assumption that the observed flux measurements
of a source are normally distributed around the true mean flux of the source, an equation
that computes, for a given source with a true mean flux and standard deviation Sy and oy,
what is the likelihood [; to make a flux measurement S; with an error o;:

1 (S; — So)*

lj = exp|—

21 (od + 0J2-) 2(032‘ + Ug)]. )

When considering N flux values and errors for all the points on our lightcurves, this

likelihood turns into:

N N | N (S; — So)?
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We can then integrate over a space of values for Sy in order to have an expression for the

likelihood to be only in terms of the flux measurements and observed errors:

N
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where the bounds of integration of Sy are taken to be centered around what our best
estimate for the mean flux of the source is. We can then input a range of values for the
oo candidates and look at the resulting L£(op) distribution. A Gaussian fit is performed
on that distribution, which allows to pick the mean of the fit as opes (see figure 5). This
allows to find a value opes for 1817 of our sources (about 98% of the catalog of CHIME).
In practice, to aid in the numerical integration of equation 7, S; and o; are normalized to
make Sy = 0 and 0,5 = 1. This normalization is undone after determining op.s. Also, day
flagged data is rejected from our lightcurves in order to remove contaminated data from the
Sun as mentioned in section 1.3.3. It is deemed more appropriate to conservatively reject all

outliers even if it means getting rid of uncontaminated data.

10
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Figure 5: Distribution of the likelihood function depending on the of; candidates, here for the
source J2330+3348. Notice the oy is starred given that this likelihood function is computed
in the space where o, is set to 1. The peak of the fit is chosen instead of the maximum
value of the data points since the resolution of the o candidates’ array is not always good
enough to ensure that the peak of the data is close enough to the peak of the distribution.

Once opes 18 found, we can associate it to Spes in order to retrieve our best estimate for

the modulation index, my = gb—ej This allows us to find a modulation index estimate mg for

929 sources, whose distribution is shown in figure 6 :

my distribution
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Figure 6: Distribution of mg, shown here up to 1. Notice a lot of values are sent to zero
because they were too close to zero compared to their error. This causes only very few sources
to be observed with very low variability, such that we cannot report most of the very low
variable sources. Thus, in order for our model of this distribution to be more accurate, we
need to consider a lower bound on mq given that data close to 0 underestimates the actual
population of sources with very low variability.
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4 Statistical Analysis of my

4.1 Finding Appropriate Parameters

We would like to directly compare the variability of different selections of sources given
that we now have their variability metric. To do so, we can look for the expected values
of mg for our different selections along with their error. To do so, Richards et al. fit their
distributions to an exponential fit, whose statistics are known well enough to extract an
expected value and corresponding error easily. This choice of an exponential fit embeds no
physical motivation and is just handy for our mg distribution. Before performing those fits,
we need to make sure we are using a sensible range and number of bins to our histogram, as
these choices will greatly influence the resulting expected value of my.

As mentioned in the caption of figure 6, a lower bound on mg needs to be established
to have a more accurate distribution given our limited capacity to report very low variable
sources. To do so, we can perform a fit on our total mg distribution at various lower bounds
and look at how does the expected value of my change as a function of the chosen lower

bound. The results are displayed in figure 7.

What is the expected value of mp depending on the cutoff?

0.12

0.10

Resulting expectzd value for mo distribution

0.00 0.02 004 006 0.08 010
Minimum mg threshold

Figure 7: Plot showing how the expected value of m( changes as a function of the chosen
lower bound for the total population. Notice the region from 0 to 0.06 where the expected
value drops corresponding to the region where the distribution is affected by an insufficient
amount of sources. As the cutoff increases, mq stabilizes around 0.08. For that reason, 0.08
is taken to be the lower bound, as taking a value close to it doesn’t significantly change the
resulting my.
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Therefore, we take 0.08 as the lower bound on our population of mg values. We have no
physical reason to choose an upper bound, but given the presence of outliers at higher my, it
would be more reasonable to consider one. A quick look into different tries of upper bounds
shows that there is no marginal difference when that bound is taken around 0.5. While it
would be better to enclose more data by choosing a higher upper bound, it is deemed better
to exclude all outliers than accepting a few. Thus, 0.5 is taken as our upper bound, such
that our values for mg are chosen to go from 0.08 to 0.5. Given this range, what bin width
should be chosen?

From our Gaussian fit from figure 5, each of our mg values is attributed an error. It
would therefore be relevant to consider the mean error on mg to be the typical bin width
given it represents the resolution of our my values. We can then find the number of bins on
the histogram to be the range of my divided by the bin width. The distribution of error on

all mg values is shown in figure 8.

Distribution of the error on my
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Figure 8: Histogram of the distribution of the error on mg. It has a mean of ~ 0.01, therefore

the typical error on our mg values is taken to be 0.01. Given a range of m of 0.42, we take

a reasonable estimate for our number of bins to be % = 42.

We now have thought out parameters to use for our exponential fit. By using a bin width
of 0.01 along with upper and lower bounds of 0.5 and 0.08 for mg, the resulting distribution

of my is shown in figure 9.
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Figure 9: Distribution of all computed mg between 0.08 and 0.5. The lower bound and upper
bound have been determined given the poor accuracy of our distribution near zero and the
presence of outliers. The mean error on mg being 0.01, the bin width is chosen to be 0.01. An
exponential is fit to the resulting histogram. The resulting expected value of mg for the total
distribution, which now encloses 298 sources, is 0.058+0.003. The OVRO collaboration found
an equivalent quantity of 0.0914+0.008 (Richards et al., 2011). Thus, there is a significant
discrepancy in the absolute measured variability between CHIME and OVRO, which observe
at very different wavelengths.

4.2 Looking into Different Selections of Blazars

The computation of mg allows to have a variability metric for 929 blazars out of the 1847
initial sources. We use a filter on these mg values by excluding all those lesser than 0.08 and
greater than 0.5 in order to have a distribution that is not affected by our underestimation
of low variable sources nor by outliers, which reduces our total population to 298 m, values,
out of which 208 are Flat Spectrum Radio Quasars (FSRQs) and 43 are BL Lac Objects.
In their analysis in the 15 GHz bandwidth, the OVRO collaboration reports a significant
difference between the variability of the FSRQ and BL Lac objects populations, observing
that the expected value of the modulation index of BL. Lac objects is marginally higher than
the one for FSRQs. Also, the expected value of the variability of FSRQs with a redshift
smaller than 1 was observed to be significantly higher than the one of FSRQs with a redshift
greater or equal than 1 (Richards et al., 2011). The same tests can be conducted with the

data set found from this analysis.
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An exponential function fit to the distribution of mg for FSRQs and BL Lac objects allows
to compare the probability density functions (PDF') of mq for both those populations. Figure
10 shows both distributions and exponential fits and figure 11 shows both resulting PDF's
along with the equivalent results from the OVRO collaboration.

my distribution for FSRQs with exponential fit my distribution for BL Lac objects with exponential fit
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Figure 10: Histograms of mg for FSRQs and BL Lac objects along with their exponential fit.
This results in an expected value for mg of 0.046+0.003 for FSRQs and 0.08+0.1 for BL Lac
objects.
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Figure 11: On the left: comparison between the PDFs of mg of FSRQs and BL Lac objects
using CHIME data. From this plot, BL Lac objects show a significantly higher variability
than FSRQs on average. On the right: comparison between the PDFs of mg for FSRQs and
BL Lac objects from the OVRO telescope (Richards et al., 2011).
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The expected value of mg is 0.046+0.003 for FSRQs and 0.08+0.1 for BL Lac objects. For
FSRQs, the expected value of my measured from OVRO is more than 90 away from the one
measured with CHIME, which shows significant discrepancy between the two experiments (for
BL Lacs, that difference is of order 10). Though the difference between the two populations
is the same: BL Lac objects are marginally more variable than FSRQs.

A similar selection of blazars can be used, this time comparing the variability of FSRQs
with redshift higher or smaller than 1. Out of the 208 FSRQs, 150 have a redshift greater
or equal than 1 and 58 have a redshift smaller than 1. The resulting distributions and
exponential fit are shown in figure 12 while the resulting PDF's are shown in figure 13 along

with the equivalent results from OVRO:

my distribution for FSRQs with z= 1 with exponential fit my distribution for FSROs with z<1 with exponential fit
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Figure 12: Histograms of mg for FSRQs with z > 1 and z < 1 along with their exponential
fit. This results in an expected value for mg of 0.051+£0.007 for low z FSRQs and 0.04140.003
for higher z FSRQs.
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Figure 13: On the left: comparison between the PDFs of mg of FSRQs with z > 1 and 2z <1
using CHIME data. On the right: comparison between the PDF's of my of FSRQs with z > 1
and z <1 from the OVRO telescope (Richards et al., 2011).
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The redshift analysis shows that while the absolute variability of the chosen populations
differ significantly between CHIME and OVRO (as the OVRO results are of order ~ 50 away
from the CHIME results), the qualitative conclusions are in accordance: low redshift FSRQs
display significant higher variability than high redshift FSRQs, despite that difference being
less marginal with the CHIME dataset. Therefore, the CHIME analysis of blazars’ variability
draws the same qualitative conclusions as those of the OVRO’s despite measuring an average

order of variability marginally smaller.

5 Conclusion

This analysis, beyond having shown CHIME’s ability to perform a point source variability
monitoring (despite requiring literature data for absolute flux values), has allowed for the
confirmation of the importance of the radio bandwidth for the study of blazars. It appears
indeed that the differences in variability among the different populations of blazars observed
by the OVRO collaboration 10 years ago in the 15GHz bandwidth using a pointed 40-m
telescope are also apparent when using recent data at 600MHz from the CHIME telescope.
This persistence, far from being trivial, hints towards the importance of this result, which
suggests that the categorization of blazars between FSRQs and BL Lac objects, originally
based on one part of the electromagnetic spectrum (the optical bandwidth) seems to have
an importance in another part of the electromagnetic spectrum (here, the radio bandwidth).
Future research would have to relate the physics of both radio and optical observations in
a way that is consistent with these conclusions. For example, it could be that the physical
phenomena at the origin of the emission of blazars’ optical spectral lines are the same as the
ones causing their variability in the radio bandwidth.

Also, as far as CHIME and the OVRO draw same qualitative conclusions on these differ-
ences in variability, their quantitative results are significantly different, with OVRO observing
absolute variability marginally higher than CHIME’s. It is speculated to be due to the dif-
ferent bandwidth used.
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At radio wavelengths, blazars’ measured flux originates from synchrotron radiation, whose
energy is higher near the center of the black hole due to the gravitational potential well
accelerating particles. While we would expect the spectrum coming from the inner region of
a black hole to be independent of frequency in our regime, it is different when looking farther
away, where electrons’ radiation is expected to be less energetic, such that higher flux should
be measured at lower frequency. However, if one instrument does not have the resolution to
spatially solve for the black hole, the sum from both the inner and outer region of the black
hole are measured. At lower frequency, the contribution of both those regions is higher than
at higher frequency given that the higher frequency signal dims as you get farther away from
the black hole, contrary to the lower frequency signal (Condon & Ransom, 2016). Given
neither CHIME nor the OVRO are able to spatially solve the blazars they observe, we expect
blazars’ mean measured flux from CHIME to be higher than the OVRO’s as CHIME observes
at lower frequency.

If we look back at our equation for the modulation index m = g—g, higher measured flux
translates to lower m. This would explain why CHIME observes an absolute variability that
is marginally lower than the OVRO’s, as CHIME’s bandwidth is around 600MHz compared
to 15 GHz for the OVRO.

All of these investigations are trying to uncover the mysterious physical phenomena sur-
rounding blazars, notably their emission of gamma rays, whose origin still sparks debate.
Significant differences in the radio variability of various blazar populations having been es-
tablished, future research would have to focus on explaining why do we observe them and
more fundamentally, how does a classification based on the observation of optical spectral

lines somehow relate to the observation of months-scale radio variability.
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